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Abstract

Document-level relation extraction aims to ex-
tract relations among entities within a docu-
ment. Different from sentence-level relation
extraction, it requires reasoning over multi-
ple sentences across a document. In this
paper, we propose Graph Aggregation-and-
Inference Network (GAIN) featuring double
graphs. GAIN first constructs a heterogeneous
mention-level graph (hMG) to model complex
interaction among different mentions across
the document. It also constructs an entity-
level graph (EG), based on which we propose
a novel path reasoning mechanism to infer re-
lations between entities. Experiments on the
public dataset, DocRED, show GAIN achieves
a significant performance improvement (2.85
on F1) over the previous state-of-the-art. Our
code is available at https://github.com/
DreamInvoker/GAIN.

1 Introduction

The task of identifying semantic relations between
entities from text, namely relation extraction (RE),
plays a crucial role in a variety of knowledge-based
applications, such as question answering (Yu et al.,
2017) and large-scale knowledge graph construc-
tion. Previous methods (Zeng et al., 2014; Zeng
et al., 2015; Xiao and Liu, 2016; Zhang et al., 2017;
Zhang et al., 2018; Baldini Soares et al., 2019)
focus on sentence-level RE, which predicts rela-
tions among entities in a single sentence. However,
sentence-level RE models suffer from an inevitable
limitation – they fail to recognize relations between
entities across sentences. Hence, extracting rela-
tions at the document-level is necessary for a holis-
tic understanding of knowledge in text.

There are several major challenges in effective
relation extraction at the document-level. Firstly,
the subject and object entities involved in a relation
∗Equal contribution.
†Corresponding author.

Elias Brown
[1] Elias Brown (May 9, 1793– July 7, 1857) was a U.S.
Representative from Maryland. [2] Born near Baltimore,
Maryland, Brown attended the common schools. … [7] He
died near Baltimore, Maryland, and is interred in a private
cemetery near Eldersburg,Maryland.

Subject: Maryland
Object: U.S.
relation: country

Subject: Baltimore；Eldersburg
Object: Maryland
relation: located in the administrative territorial entity
Subject: Baltimore；Eldersburg
Object: U.S.
relation: country

Figure 1: An example document and its desired rela-
tions from DocRED (Yao et al., 2019). Entity men-
tions and relations involved in these relation instances
are colored. Other mentions are underlined for clarity.

may appear in different sentences. Therefore a re-
lation cannot be identified based solely on a single
sentence. Secondly, the same entity may be men-
tioned multiple times in different sentences. Cross-
sentence context information has to be aggregated
to represent the entity better. Thirdly, the identifi-
cation of many relations requires techniques of log-
ical reasoning. This means these relations can only
be successfully extracted when other entities and
relations, usually spread across sentences, are iden-
tified implicitly or explicitly. As Figure 1 shows,
it is easy to recognize the intra-sentence relations
(Maryland, country, U.S.), (Baltimore, located in
the administrative territorial entity, Maryland), and
(Eldersburg, located in the administrative territorial
entity, Maryland), since the subject and object ap-
pear in the same sentence. However, it is non-trivial
to predict the inter-sentence relations between Bal-
timore and U.S., as well as Eldersburg and U.S.,
whose mentions do not appear in the same sentence
and have long-distance dependencies. Besides, the
identification of these two relation instances also
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Error Type Count
Intra-sentence 535
Inter-sentence 615
Logical Reasoning 242

Table 1: Statistics of bad cases in randomly sampled
100 documents from DocRED dev set for BiLSTM
(Yao et al., 2019), with 1150 bad cases in total.

requires logical reasoning. For example, Elders-
burg belongs to U.S. because Eldersburg is located
in Maryland, which belongs to U.S..

Recently, Yao et al. (2019) proposed a large-
scale human-annotated document-level RE dataset,
DocRED, to push sentence-level RE forward to
document-level and it contains massive relation
facts. Figure 1 shows an example from DocRED.
We randomly sample 100 documents from the Do-
cRED dev set and manually analyze the bad cases
predicted by a BiLSTM-based model proposed by
Yao et al. (2019). As shown in Table 1, the error
type of inter-sentence and that of logical reasoning
take up a large proportion of all bad cases, with
53.5% and 21.0% respectively. Therefore, in this
paper, we aim to tackle these problems to extract
relations from documents better.

Previous work in document-level RE do not con-
sider reasoning (Gupta et al., 2019; Jia et al., 2019;
Yao et al., 2019), or only use graph-based or hi-
erarchical neural network to conduct reasoning in
an implicit way (Peng et al., 2017; Sahu et al.,
2019; Nan et al., 2020). In this paper, we pro-
pose a Graph Aggregation-and-Inference Network
(GAIN) for document-level relation extraction. It
is designed to tackle the challenges mentioned
above directly. GAIN constructs a heterogeneous
Mention-level Graph (hMG) with two types of
nodes, namely mention node and document node,
and three different types of edges, i.e., intra-entity
edge, inter-entity edge and document edge, to cap-
ture the context information of entities in the doc-
ument. Then, we apply Graph Convolutional Net-
work (Kipf and Welling, 2017) on hMG to get a
document-aware representation for each mention.
Entity-level Graph (EG) is then constructed by
merging mentions that refer to the same entity in
hMG, on top of which we propose a novel path
reasoning mechanism. This reasoning mechanism
allows our model to infer multi-hop relations be-
tween entities.

In summary, our main contributions are as fol-

lows:

• We propose a novel method, Graph
Aggregation-and-Inference Network (GAIN),
which features a double graph design, to
better cope with document-level RE task.

• We introduce a heterogeneous Mention-level
Graph (hMG) with a graph-based neural net-
work to model the interaction among differ-
ent mentions across the document and offer
document-aware mention representations.

• We introduce an Entity-level Graph (EG) and
propose a novel path reasoning mechanism
for relational reasoning among entities.

We evaluate GAIN on the public DocRED
dataset. It significantly outperforms the previous
state-of-the-art model by 2.85 F1 score. Further
analysis demonstrates the capability of GAIN to ag-
gregate document-aware context information and
to infer logical relations over documents.

2 Task Formulation

We formulate the document-level relation extrac-
tion task as follows. Given a document com-
prised of N sentences D = {si}Ni=1 and a va-
riety of entities E = {ei}Pi=1, where si =

{wj}Mj=1 refers to the i-th sentence consisting of

M words, ei = {mj}Qj=1 and mj refers to a
span of words belonging to the j-th mention of
the i-th entity, the task aims to extract the re-
lations between different entities in E , namely
{(ei, rij , ej)|ei, ej ∈ E , rij ∈ R}, where R is a
pre-defined relation type set.

In our paper, a relation rij between entity ei
and ej is defined as inter-sentential, if and only if
Sei ∩ Sej = ∅, where Sei denotes those sentences
containing mentions of ei. Instead, a relation rij is
defined as intra-sentential, if and only if Sei∩Sej 6=
∅. We also define K-hop relational reasoning as
predicting relation rij based on a K-length chain
of existing relations, with ei and ej being the head
and tail of the reasoning chain, i.e., ei

r1−→ em
r2−→

. . . en
rK−→ ej ⇒ ei

rij−→ ej .

3 Graph Aggregation and Inference
Network (GAIN)

GAIN mainly consists of 4 modules: encoding
module (Sec. 3.1), mention-level graph aggrega-
tion module (Sec. 3.2), entity-level graph inference
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[1] Elias Brown … was a U.S. Representative from Maryland. [2] Born near Baltimore, Maryland, …

[7] He died near Baltimore, Maryland, and is interred in a private cemetery near Eldersburg, Maryland.
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Figure 2: The overall architecture of GAIN. First, A context encoder consumes the input document to get a
contextualized representation of each word. Then, the Mention-level Graph is constructed with mention nodes and
a document node. After applying GCN, the graph is transformed into Entity-level Graph, where the paths between
entities are identified for reasoning. Finally, the classification module predicts target relations based on the above
information. Different entities are in different colors. The number i in the mention node denotes that it belongs to
the i-th sentence.

module (Sec. 3.3), classification module (Sec. 3.4),
as is shown in Figure 2.

3.1 Encoding Module

In the encoding module, we convert a document
D = {wi}ni=1 containing n words into a sequence
of vectors {gi}ni=1. Following Yao et al. (2019),
for each word wi in D, we first concatenate its
word embedding with entity type embedding and
coreference embedding:

xi = [Ew(wi);Et(ti);Ec(ci)] (1)

where Ew(·) , Et(·) and Ec(·) denote the word
embedding layer, entity type embedding layer and
coreference embedding layer, respectively. ti and
ci are named entity type and entity id. We intro-
duce None entity type and id for those words not
belonging to any entity.

Then the vectorized word representations are
fed into an encoder to obtain the context sensitive
representation for each word:

[g1, g2, . . . , gn] = Encoder([x1, x2, . . . , xn])
(2)

where the Encoder can be LSTM or other models.

3.2 Mention-level Graph Aggregation
Module

To model the document-level information and inter-
actions between mentions and entities, a heteroge-
neous Mention-level Graph (hMG) is constructed.

hMG has two different kinds of nodes: mention
node and document node. Each mention node de-
notes one particular mention of an entity. And hMG
also has one document node that aims to model the
overall document information. We argue that this
node could serve as a pivot to interact with different
mentions and thus reduce the long distance among
them in the document.

There are three types of edges in hMG:

• Intra-Entity Edge: Mentions referring to the
same entity are fully connected with intra-
entity edges. In this way, the interaction
among different mentions of the same entity
could be modeled.

• Inter-Entity Edge: Two mentions of differ-
ent entities are connected with an inter-entity
edge if they co-occur in a single sentence. In
this way, interactions among entities could be
modeled by co-occurrences of their mentions.

• Document Edge: All mentions are connected
to the document node with the document edge.



With such connections, the document node
can attend to all the mentions and enable in-
teractions between document and mentions.
Besides, the distance between two mention
nodes is at most two with the document node
as a pivot. Therefore long-distance depen-
dency can be better modeled.

Next, we apply Graph Convolution Network
(Kipf and Welling, 2017) on hMG to aggregate
the features from neighbors. Given node u at the
l-th layer, the graph convolutional operation can be
defined as:

h(l+1)
u = σ

∑
k∈K

∑
v∈Nk(u)

W
(l)
k h(l)v + b

(l)
k

 (3)

whereK are different types of edges, W (l)
k ∈ Rd×d

and b
(l)
k ∈ Rd are trainable parameters. Nk(u)

denotes neighbors for node u connected in k-th
type edge. σ is an activation function (e.g., ReLU).

Different layers of GCN express features of dif-
ferent abstract levels, and therefore in order to
cover features of all levels, we concatenate hidden
states of each layer to form the final representation
of node u:

mu = [h(0)u ;h(1)u ; . . . ;h(N)
u ] (4)

where h(0)u is the initial representation of node u.
For a mention ranging from the s-th word to the
t-th word in the document, h(0)u = 1

t−s+1

∑t
j=s gj

and for document node, it is initialized with the
document representation output from the encoding
module.

3.3 Entity-level Graph Inference Module
In this subsection, we introduce Entity-level Graph
(EG) and path reasoning mechanism. First, men-
tions that refer to the same entity are merged to
entity node so as to get the nodes in EG. Note that
we do not consider document node in EG. For i-th
entity node ei mentioned N times, it is represented
by the average of its N mention representations:

ei =
1

N

∑
n

mn (5)

Then, we merge all inter-entity edges that con-
nect mentions of the same two entities so as to get
the edges in EG. The representation of directed
edge from ei to ej in the EG is defined as :

eij = σ (Wq[ei; ej ] + bq) (6)

where Wq and bq are trainable parameters, and σ is
an activation function (e.g., ReLU).

Based on the vectorized edge representation, the
i-th path between head entity eh and tail entity et
passing through entity eo is represented as:

pi
h,t = [eho; eot; eto; eoh] (7)

Note that we only consider two-hop paths here,
while it can easily extend to multi-hop paths.

We also introduce attention mechanism (Bah-
danau et al., 2015), using the entity pair (eh, et)
as query, to fuse the information of different paths
between eh and et.

si = σ([eh; et] ·Wl · pi
h,t) (8)

αi =
esi∑
j e

sj
(9)

ph,t =
∑
i

αipi
h,t (10)

where αi is the normalized attention weight for i-th
path. Consequently, the model will pay more atten-
tion to useful paths. σ is an activation function.

With this module, an entity can be represented
by fusing information from its mentions, which
usually spread in multiple sentences. Moreover,
potential reasoning clues are modeled by different
paths between entities. Then they can be integrated
with the attention mechanism so that we will take
into account latent logical reasoning chains to pre-
dict relations.

3.4 Classification Module
For each entity pair (eh, et), we concatenate the fol-
lowing representations: (1) the head and tail entity
representation eh and et derived in the Entity-level
Graph, with the comparing operation (Mou et al.,
2016) to strengthen features, i.e., absolute value
of subtraction between the representation of two
entities, |eh − et|, and element-wise multiplica-
tion, eh � et; (2) the representation of document
node in Mention-level Graph, mdoc, as it can help
aggregate cross-sentence information and provide
document-aware representation; (3) the compre-
hensive inferential path information ph,t.

Ih,t = [eh; et; |eh − et|; eh � et;mdoc;ph,t] (11)

Finally, we formulate the task as multi-label clas-
sification task and predict relations between enti-
ties:

P (r|eh, et) = sigmoid (Wbσ(WaIh,t + ba) + bb)
(12)



where Wa, Wb, ba, bb are trainable parameters, σ is
an activation function (e.g., ReLU). We use binary
cross entropy as the classification loss to train our
model in an end-to-end way:

L = −
∑
D∈S

∑
h6=t

∑
ri∈R

I (ri = 1) logP (ri|eh, et)

+ I (ri = 0) log (1− P (ri|eh, et))
(13)

where S denotes the whole corpus, and I (·) refers
to indication function.

4 Experiments

4.1 Dataset
We evaluate our model on DocRED (Yao et al.,
2019), a large-scale human-annotated dataset for
document-level RE constructed from Wikipedia
and Wikidata. DocRED has 96 relations types,
132, 275 entities, and 56, 354 relational facts in
total. Documents in DocRED contain about 8 sen-
tences on average, and more than 40.7% relation
facts can only be extracted from multiple sentences.
Moreover, 61.1% relation instances require vari-
ous inference skills such as logical inference (Yao
et al., 2019). we follow the standard split of the
dataset, 3, 053 documents for training, 1, 000 for
development and 1, 000 for test. For more detailed
statistics about DocRED, we recommend readers
to refer to the original paper (Yao et al., 2019).

4.2 Experimental Settings
In our GAIN implementation, we use 2 layers of
GCN and set the dropout rate to 0.6, learning rate to
0.001. We train GAIN using AdamW (Loshchilov
and Hutter, 2019) as optimizer with weight de-
cay 0.0001 and implement GAIN under PyTorch
(Paszke et al., 2017) and DGL (Wang et al., 2019b).

We implement three settings for our GAIN.
GAIN-GloVe uses GloVe (100d) and BiLSTM
(256d) as word embedding and encoder. GAIN-
BERTbase and GAIN-BERTlarge use BERTbase

and BERTlarge as encoder respectively and the
learning rate is set to 1e−5.

4.3 Baselines and Evaluation Metrics
We use the following models as baselines.

Yao et al. (2019) proposed models to encode the
document into a sequence of hidden state vector
{hi}ni=1 using CNN (Fukushima, 1980), LSTM
(Hochreiter and Schmidhuber, 1997), and BiL-
STM (Schuster and Paliwal, 1997) as their encoder,

and predict relations between entities with their rep-
resentations. Other pre-trained models like BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
and CorefBERT (Ye et al., 2020) are also used as
encoder (Wang et al., 2019a; Ye et al., 2020) to
document-level RE task.

Context-Aware, also proposed by Yao et al.
(2019) on DocRED adapted from (Sorokin and
Gurevych, 2017), uses an LSTM to encode the text,
but further utilizes attention mechanism to absorb
the context relational information for predicting.

BERT-Two-Stepbase, proposed by Wang et al.
(2019a) on DocRED. Though similar to BERT-
REbase, it first predicts whether two entities have
a relationship and then predicts the specific target
relation.

HIN-GloVe/HIN-BERTbase, proposed by Tang
et al. (2020). Hierarchical Inference Network
(HIN) aggregate information from entity-level,
sentence-level, and document-level to predict target
relations, and use GloVe (Pennington et al., 2014)
or BERTbase for word embedding.

LSR-GloVe/LSR-BERTbase, proposed by Nan
et al. (2020) recently. They construct a graph based
on the dependency tree and predict relations by la-
tent structure induction and GCN. Nan et al. (2020)
also adapted four graph-based state-of-the-art RE
models to DocRED, including GAT (Velickovic
et al., 2017), GCNN (Sahu et al., 2019), EoG
(Christopoulou et al., 2019), and AGGCN (Guo
et al., 2019). We also include their results.

Following Yao et al. (2019), we use the widely
used metrics F1 and AUC in our experiment. We
also use Ign F1 and Ign AUC, which calculate F1
and AUC excluding the common relation facts in
the training and dev/test sets.

4.4 Results

We show GAIN’s performance on the DocRED
dataset in Table 2, in comparison with other base-
lines.

Among the models not using BERT or BERT
variants, GAIN-GloVe consistently outperforms all
sequential-based and graph-based strong baselines
by 0.9 ∼ 12.82 F1 score on the test set. Among
the models using BERT or BERT variants, GAIN-
BERTbase yields a great improvement of F1/Ign F1
on dev and test set by 2.22/6.71 and 2.19/2.03, re-
spectively, in comparison with the strong baseline
LSR-BERTbase. GAIN-BERTlarge also improves
2.85/2.63 F1/Ign F1 on test set compared with



Model Dev Test

Ign F1 Ign AUC F1 AUC Ign F1 F1
CNN∗ (Yao et al., 2019) 41.58 36.85 43.45 39.39 40.33 42.26
LSTM∗ (Yao et al., 2019) 48.44 46.62 50.68 49.48 47.71 50.07
BiLSTM∗ (Yao et al., 2019) 48.87 47.61 50.94 50.26 48.78 51.06
Context-Aware∗ (Yao et al., 2019) 48.94 47.22 51.09 50.17 48.40 50.70
HIN-GloVe∗ (Tang et al., 2020) 51.06 - 52.95 - 51.15 53.30
GAT‡ (Velickovic et al., 2017) 45.17 - 51.44 - 47.36 49.51
GCNN‡ (Sahu et al., 2019) 46.22 - 51.52 - 49.59 51.62
EoG‡ (Christopoulou et al., 2019) 45.94 - 52.15 - 49.48 51.82
AGGCN‡ (Guo et al., 2019) 46.29 - 52.47 - 48.89 51.45
LSR-GloVe∗ (Nan et al., 2020) 48.82 - 55.17 - 52.15 54.18
GAIN-GloVe 53.05 52.57 55.29 55.44 52.66 55.08
BERT-RE∗base (Wang et al., 2019a) - - 54.16 - - 53.20
RoBERTa-RE†base 53.85 48.27 56.05 51.35 53.52 55.77
BERT-Two-Step∗base (Wang et al., 2019a) - - 54.42 - - 53.92
HIN-BERT∗base (Tang et al., 2020) 54.29 - 56.31 - 53.70 55.60
CorefBERT-RE∗base (Ye et al., 2020) 55.32 - 57.51 - 54.54 56.96
LSR-BERT∗base (Nan et al., 2020) 52.43 - 59.00 - 56.97 59.05
GAIN-BERTbase 59.14 57.76 61.22 60.96 59.00 61.24
BERT-RE∗large (Ye et al., 2020) 56.67 - 58.83 - 56.47 58.69
CorefBERT-RE∗large (Ye et al., 2020) 56.73 - 58.88 - 56.48 58.70
RoBERTa-RE∗large (Ye et al., 2020) 57.14 - 59.22 - 57.51 59.62
CorefRoBERTa-RE∗large (Ye et al., 2020) 57.84 - 59.93 - 57.68 59.91
GAIN-BERTlarge 60.87 61.79 63.09 64.75 60.31 62.76

Table 2: Performance on DocRED. Models above the first double line do not use pre-trained model. Results with
* are reported in their original papers. Results with ‡ are performances of graph-based state-of-the-art RE models
implemented in (Nan et al., 2020). Results with † are based on our implementation.

previous state-of-the-art method, CorefRoBERTa-
RElarge. It suggests that GAIN is more effective
in document-level RE tasks. We can also observe
that LSR-BERTbase improves F1 by 3.83 and 4.87
on dev and test set with GloVe embedding re-
placed with BERTbase. In comparison, our GAIN-
BERTbase yields an improvement by 5.93 and 6.16,
which indicates GAIN can better utilize BERT rep-
resentation.

4.5 Ablation Study

To further analyze GAIN, we also conduct ablation
studies to illustrate the effectiveness of different
modules and mechanisms in GAIN. We show the
results of the ablation study in Table 3.

First, we remove the heterogeneous Mention-
level Graph (hMG) of GAIN. In detail, we initial-
ize an entity node in Entity-level Graph (EG) with
Eq. 5 but replace mn with h(0)n , and apply GCN to
EG instead. Features in different layers of GCN are
concatenated to obtain ei. Without hMG, the perfor-
mance of GAIN-GloVe/GAIN-BERTbase sharply
drops by 2.08/2.02 Ign F1 score on dev set. This
drop shows that hMG plays a vital role in capturing
interactions among mentions belonging to the same
and different entities and document-aware features.

Next, we remove the inference module. To be
specific, the model abandon the path information
between head and tail entity ph,t obtained in Entity-
level Graph, and predict relations only based on

entity representation, eh and et, and document node
representation, mdoc. The inference module’s re-
moval results in poor performance across all met-
rics, for instance, 2.21/2.17 Ign F1 score decrease
on the dev set for GAIN-GloVe/GAIN-BERTbase.
It suggests that our path inference mechanism helps
capture the potentialK-hop inference paths to infer
relations and, therefore, improve document-level
RE performance.

Moreover, taking away the document node in
hMG leads to 2.19/1.88 Ign F1 decrease on the
dev set for GAIN-GloVe/GAIN-BERTbase. It helps
GAIN aggregate the document information and
works as a pivot to facilitate the information ex-
change among different mentions, especially those
far away from each other within the document.

4.6 Analysis & Discussion

In this subsection, we further analyze both inter-
sentential and inferential performance on the de-
velopment set. The same as Nan et al. (2020), we
report Intra-F1/Inter-F1 scores in Table 4, which
only consider either intra- or inter-sentence rela-
tions respectively. Similarly, in order to evaluate
the inference ability of the models, Infer-F1 scores
are reported in Table 5, which only considers re-
lations that engaged in the relational reasoning
process . For example, we take into account the
golden relation facts r1, r2, and r3 if there exist
eh

r1−→ eo
r2−→ et and eh

r3−→ et when calculating



Model
Dev Test

Ign F1 Ign AUC F1 AUC Ign F1 F1
GAIN-GloVe 53.05 52.57 55.29 55.44 52.66 55.08

- hMG 50.97 48.84 53.10 51.73 50.76 53.06
- Inference Module 50.84 48.68 53.02 51.58 50.32 52.66
- Document Node 50.86 48.68 53.01 52.46 50.32 52.67

GAIN-BERTbase 59.14 57.76 61.22 60.96 59.00 61.24
- hMG 57.12 51.54 59.17 54.61 57.31 59.56
- Inference Module 56.97 54.29 59.28 57.25 57.01 59.34
- Document Node 57.26 52.07 59.62 55.51 57.01 59.63

Table 3: Performance of GAIN with different embeddings and submodules.

Model Intra-F1 Inter-F1
CNN∗ 51.87 37.58
LSTM∗ 56.57 41.47
BiLSTM∗ 57.05 43.49
Context-Aware∗ 56.74 42.26
LSR-GloVe∗ 60.83 48.35
GAIN-GloVe 61.67 48.77
- hMG 59.72 46.49
BERT-RE∗base 61.61 47.15
RoBERTa-REbase 65.65 50.09
BERT-Two-Step∗base 61.80 47.28
LSR-BERT∗base 65.26 52.05
GAIN-BERTbase 67.10 53.90
- hMG 66.15 51.42

Table 4: Intra- and Inter-F1 results on dev set of Do-
cRED. Results with * are reported in (Nan et al., 2020).

Infer-F1.
As Table 4 shows, GAIN outperforms other base-

lines not only in Intra-F1 but also Inter-F1, and the
removal of hMG leads to a more considerable de-
crease in Inter-F1 than Intra-F1, which indicates
our hMG do help interactions among mentions,
especially those distributed in different sentences
with long-distance dependency.

Besides, Table 5 suggests GAIN can better han-
dle relational inference. For example, GAIN-
BERTbase improves 5.11 Infer-F1 compared with
RoBERTa-REbase. The inference module also
plays an important role in capturing potential infer-
ence chains between entities, without which GAIN-
BERTbase would drop by 1.78 Infer-F1.

4.7 Case Study
Figure 3 also shows the case study of our proposed
model GAIN, in comparison with other baselines.
As is shown, BiLSTM can only identify two rela-

Model Infer-F1 P R
CNN 37.11 32.81 42.72
LSTM 39.03 33.16 47.44
BiLSTM 38.73 31.60 50.01
Context-Aware 39.73 33.97 47.85
GAIN-GloVe 40.82 32.76 54.14
- Inference Module 39.76 32.26 51.80
BERT-REbase 39.62 34.12 47.23
RoBERTa-REbase 41.78 37.97 46.45
GAIN-BERTbase 46.89 38.71 59.45
- Inference Module 45.11 36.91 57.99

Table 5: Infer-F1 results on dev set of DocRED. P: Pre-
cision, R: Recall.

tions within the first sentence. Both BERT-REbase

and GAIN-BERTbase can successfully predict With-
out Me is part of The Eminem Show. But only
GAIN-BERTbase is able to deduce the performer
and publication date of Without Me are the same as
those of The Eminem Show, namely Eminem and
May 26, 2002, where it requires logical inference
across sentences.

5 Related Work

Previous approaches focus on sentence-level rela-
tion extraction (Zeng et al., 2014; Zeng et al., 2015;
Wang et al., 2016; Zhou et al., 2016; Xiao and Liu,
2016; Zhang et al., 2017; Feng et al., 2018; Zhu
et al., 2019). But sentence-level RE models face an
inevitable restriction in practice, where many real-
world relation facts can only be extracted across
sentences. Therefore, many researchers gradually
shift their attention into document-level relation
extraction.

Several approaches (Quirk and Poon, 2017; Peng
et al., 2017; Gupta et al., 2019; Song et al., 2018;



[1] The Eminem Show is the fourth studio album by American rapper Eminem, released on May 26, 2002 by 
Aftermath Entertainment, Shady Records, and Interscope Records.
[2] The Eminem Show includes the commercially successful singles "Without Me", "Cleanin’ Out My Closet", 
"Superman", and "Sing for the Moment".…
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Figure 3: The case study of our proposed GAIN and baseline models. The models take the document as input and
predict relations among different entities in different colors. We only show a part of entities within the documents
and the according sentences due to the space limitation.

Jia et al., 2019) leverage dependency graph to better
capture document-specific features, but they ignore
ubiquitous relational inference in document. Re-
cently, many models are proposed to address this
problem. Tang et al. (2020) proposed a hierarchi-
cal inference network by considering information
from entity-level, sentence-level, and document-
level. However, it conducts relational inference
implicitly based on a hierarchical network while
we adopt the path reasoning mechanism, which is
a more explicit way.

(Christopoulou et al., 2019) is one of the most
powerful systems on document-level RE tasks re-
cently. Compared to (Christopoulou et al., 2019)
and other graph-based approaches to relation ex-
traction, our architecture features many different
designs with different motivations behind them.
First, the ways of graph construction are differ-
ent. We create two separate graphs of different
levels to capture long-distance document-aware in-
teractions and entity path inference information,
respectively. While Christopoulou et al. (2019) put
mentions and entities in the same graph. More-
over, they do not conduct graph node represen-
tation learning like GCN to aggregate interactive
information on the constructed graph, only using
the features from BiLSTMs to represent nodes.
Second, the processes of path inference are dif-
ferent. Christopoulou et al. (2019) use a walk-
based method to iteratively generate a path for ev-
ery entity pair, which requires the extra overhead
of hyper-parameter tuning to control the process of

inference. Instead, we use an attention mechanism
to selectively fuse all possible path information for
the entity pair while without extra overhead.

When we were writing this paper, (Nan et al.,
2020) make their work public as preprints, which
adopt the dependency tree to capture the semantic
information in the document. They put mention and
entity nodes in the same graph and conduct infer-
ence implicitly by using GCN. Unlike their work,
our GAIN presents mention node and entity node
in different graphs to better conduct inter-sentence
information aggregation and infer relations more
explicitly.

Some other attempts (Verga et al., 2018; Sahu
et al., 2019; Christopoulou et al., 2019) study
document-level RE in a specific domain like
biomedical RE. However, the datasets they use usu-
ally contain very limited relation types and entity
types. For instance, CDR (Li et al., 2016) only
has one type of relation and two types of entities,
which may not be the ideal testbed for relational
reasoning.

6 Conclusion

Extracting inter-sentence relations and conducting
relational reasoning are challenging in document-
level relation extraction.

In this paper, we introduce Graph Aggregation-
and-Inference Network (GAIN) to better cope with
document-level relation extraction, which features
double graphs in different granularity. GAIN
utilizes a heterogeneous Mention-level Graph to



model the interaction among different mentions
across the document and capture document-aware
features. It also uses an Entity-level Graph with a
proposed path reasoning mechanism to infer rela-
tions more explicitly.

Experimental results on the large-scale human-
annotated dataset, DocRED, show GAIN out-
performs previous methods, especially in inter-
sentence and inferential relations scenarios. The
ablation study also confirms the effectiveness of
different modules in our model.
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A Hyperparameter settings

We use development set to manually tune the op-
timal hyperparameters for GAIN, based on the
Ign F1 score. Hyperparameter settings for GAIN-
GloVe, GAIN-BERTbase and GAIN-BERTlarge are
listed in Table 6, 7 and 8, respectively. The value
of hyperparameters we finally adopted are in bold.
Note that we do not tune all the hyperparameters.

Hyperparameter Value
Batch Size 16, 32
Learning Rate 0.001
Activation Function ReLU, Tanh
Positive v.s. Negative Ratio 1, 0.5, 0.25
Word Embedding Size 100
Entity Type Embedding Size 20
Coreference Embedding Size 20
Encoder Hidden Size 128, 256
Dropout 0.2, 0.6, 0.8
Layers of GCN 1, 2, 3
GCN Hidden Size 512
Weight Decay 0.0001
Numbers of Parameters 63M
Hyperparameter Search Trials 12

Table 6: Settings for GAIN-GloVe.

Hyperparameter Value
Batch Size 5
Learning Rate 0.001
Activation Function ReLU, Tanh
Positive v.s. Negative Ratio 1, 0.5, 0.25
Entity Type Embedding Size 20
Coreference Embedding Size 20
Dropout 0.2, 0.6, 0.8
Layers of GCN 1, 2, 3
GCN Hidden Size 808
Weight Decay 0.0001
Numbers of Parameters 217M
Hyperparameter Search Trials 20

Table 7: Settings for GAIN-BERTbase.

Hyperparameter Value
Batch Size 5
Learning Rate 0.001
Activation Function ReLU, Tanh
Positive v.s. Negative Ratio 1, 0.5, 0.25
Entity Type Embedding Size 20
Coreference Embedding Size 20
Dropout 0.2, 0.6, 0.8
Layers of GCN 1, 2, 3
GCN Hidden Size 1064
Weight Decay 0.0001
Numbers of Parameters 512M
Hyperparameter Search Trials 20

Table 8: Settings for GAIN-BERTlarge.
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